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ABSTRACT

Lattice dynamics (LD) plays a crucial role in investigating thermal transport in terms of not only underlying physics but also novel
properties and phenomena. Recently, machine learning interatomic potentials (MLIPs) have emerged as powerful tools in computational
physics and chemistry, showing great potential in providing reliable predictions of thermal transport properties with high efficiency. This
tutorial provides a comprehensive guideline for MLIPs’ development and how they are used for the computational modeling of thermal
transport. Using atomic cluster expansion (ACE) as the paradigmatic potential, we introduce the essential fundamentals of MLIPs, including
data construction, model training, and hyperparameter optimization. With the developed ACE potentials, we further showcase their
applications in the LD modeling of thermal transport for crystalline silicon and amorphous carbon. The corresponding code implementa-
tions for MLIP applications in calculating thermal conductivity are also provided for beginners to follow.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0251119

I. INTRODUCTION

Thermal transport is one of the most critical properties of
solid materials, playing an essential role in a range of technological
applications, such as electrical device design and thermoelectric
energy conversion.1–3 Thermal conductivity of materials is signifi-
cantly related to chemistry compositions, atomic structures, sizes,
and temperatures in complex manners, bringing challenges for
thermal transport simulation, optimization, and manipulation in
practical applications.4–7 For in-depth understanding of thermal
transport, there have been extensively developed computational
methods, in which the phonon Boltzmann transport equation
(PBTE)8,9 combined lattice dynamics (LD) becomes widely
adopted. This approach offers indispensable insight with high reli-
ability, as it can derive accurate phonon properties from force con-
stants (FCs) calculated using the quantum-mechanically accurate
Density Functional Theory (DFT).10,11 However, the high compu-
tational cost of DFT calculations makes first-principles methods
quite expensive and limits their applications in complex situations,

such as high-order anharmonicity and glasses.12,13 Typically, DFT
evaluations are restricted to the system with a few thousand atoms
and only hundreds of atoms when conducting “ab initio”
simulations.14,15

In recent years, machine learning interatomic potentials
(MLIPs) have been attracting researchers’ attention due to their
computational efficiency and accuracy as a compelling alternative
to DFT. In MLIP models, a potential energy surface (PES) is con-
structed for the accurate prediction of energies and forces by learn-
ing from the DFT reference results. They offer comparable accuracy
but several orders of magnitude higher computational efficiency
than DFT,16–18 enabling reliable large-scale (up to millions of
atoms) atomic simulations19,20 and prohibitive computations for
fourth- or higher-order phonon scatterings.21–24 The applications
of MLIPs in thermal properties prediction, with advantages in effi-
ciency and accuracy, have been widely reported.25–30 To date,
numerous MLIPs have been developed with the corresponding
code implementations for computational physics, chemistry, and
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materials. Representative MLIP models are enumerated in Table I,
along with their regression types and supported tools such as
the Atomic Simulation Environment (ASE)31,32 in Python and
the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS).33 For thermal transport simulation, developing proper
MLIPs and practical workflows remains nontrivial.

Herein, the purpose of this tutorial is to provide guidance for
beginners on the development and application of MLIPs for thermal
transport calculations. We aim to complement relevant works by
others: focus on a step-by-step guide to developing MLIPs from
scratch and applying them in thermal calculations using well-
established interfaces. Our work strongly emphasizes MLIP applica-
tions in LD methods, complementing a related work by Dong et al.,41

which focused on Molecular Dynamics (MD) simulation. For the the-
oretical details of LD, we refer interested readers to the previous
papers.42–45 We present the basic concepts, data construction, model
training, and hyperparameters’ selection segments. Additionally, we
feature crystalline silicon and amorphous carbon to illustrate the prac-
tical implementation of MLIPs and the derived thermal transport cal-
culations. For this tutorial, the atomic cluster expansion (ACE)
potential has been selected as the paradigmatic model due to its pre-
cision with efficiency on high-performance parallel computation,46,47

meeting a range of computational requirements. It is worth noting
that although only the ACE potential is considered, the presented
instructions are also applicable to other MLIPs.

The remaining parts of this tutorial are organized as follows.
In Sec. II, we introduce the overall procedure of MLIP develop-
ment, which includes a brief introduction to the ACE potential
framework, data construction, potential training and estimation,
and the optimization and selection of model hyperparameters. In
Sec. III, we bring two applications of thermal calculations using
MLIPs for crystalline silicon and amorphous carbon, respectively.
Finally, this tutorial is summarized in Sec. IV.

II. MLIP DEVELOPMENT

A. Fundamental concepts and atomic cluster
expansion framework

The primary purpose of MLIPs is to model the PES of a target
system, from which the total energy and interatomic forces are derived
based on a set of N atomic positions. This modeling process, repre-
sented as a regression task in mathematics, starts with the description
of total energy, as the forces can be obtained by differentiating the
energy with respect to the atomic positions. To simplify computational

complexity and enhance efficiency, the total energy is decomposed
into the sum of individual atomic contributions,

Etol ¼
P
i
Ei, (1)

where the site energy Ei is determined by the atomic environment
within a specified cutoff radius rcut of the center atom under the
assumption of localization. In the ACE framework, it is further repre-
sented by a general function F of p different atomic properties deter-
mined by the same atomic environment as

Ei ¼ F w(1)
i , w(2)

i , . . . , w
(p)
i

� �
: (2)

These atomic properties w(p)
i are then expanded on a group of

basis functions as

w
(p)
i ¼ P

v
~c(p)v Aiv , (3)

where Aiv are the many-body basis functions and ~c(p)v are the
expansion coefficients. Since the potential energy can be considered
a sum of contributions of pair (two-body) potential, three-body
potential, and so on, the basis functions of body order ν þ 1 can be
defined as a product like

Aiv ¼
Qν
t¼1

Aivt : (4)

Considering the atomic local environment of atomic species,
the basis functions are further written as

Aiv ¼
P
j
δμμjfv(r ji), (5)

where μj is the species of a nearby atom j in the local atomic envi-
ronment, δμμj is the Kronecker symbol to consider only the bond
type of species μj and μ, and r ji denotes the relative position vector
pointed from atom i to j. fv is a single-bond basis function, which
can then be given in terms of a radial function Rnl multiplied with
a spherical harmonic function Ylm,

fμμjnlm
¼ R

μμj
nl (r ji)Ylm(r̂ ji): (6)

Here, the compressed index v is expanded into a list of indices
characterizing the chemical species μ and (nlm) indicating the

TABLE I. List of the representative MLIP models.

Model Type Supporting codes Year Reference

ACE Kernel Regression ASE, LAMMPS 2019 Drautz34

GAP Kernel Regression ASE, LAMMPS 2010 Bartok35

NEP NN (Neural Net) ASE, LAMMPS, GPUMD36 2021 Fan37

DeepPotential NN ASE, LAMMPS 2018 Han38

MACE GraphNN ASE, LAMMPS 2023 Batatia39

Allegro GraphNN ASE, LAMMPS 2023 Musaelian20

NequIP GraphNN ASE, LAMMPS 2022 Batzner40
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types of radial functions and spherical harmonic functions. The
radial functions depend on the pairwise distance r ji between atoms
i and j, and the spherical harmonic functions depend on the
respective direction r̂ ji. This expansion form fulfills the symmetry
requirements of permutational and translational invariance.

It is worth noting that in Eq. (4), the basis functions Aiv are
not invariant under rotation due to the selection of spherical har-
monic functions; thus, the expansion coefficients ~c(p)v may vary
under rotation. For implementation, the invariance is obtained by
multiplying the basis with the generalized Clebsch–Gordan coeffi-
cients for appropriate symmetries. This transforms the expansion
into another form,

w
(p)
i ¼ P

v
c(p)v Biv , (7)

where c(p)v are the learnable parameters in the ACE model that can
be optimized during fitting. More information about the ACE
framework can be found in the cited literature.34,46,47

B. Data collection

Unlike empirically fitted potentials, MLIPs do not impose any
prior assumptions on the functional form of the PES. Instead, the
shape of the potential is directly learned through a regression
process from a large set of reference configurations with their cor-
responding energies and forces, typically obtained from DFT calcu-
lations. Collectively, these elements constitute the dataset for
training and validating the ML potential. Given this nonparametric
nature of ML potentials, which lack specific physical function
forms and involve tens of thousands of parameters to be deter-
mined, the selection of reference data is especially critical. Data col-
lection must align with the application purposes of MLIPs: a
general potential requires a diverse range of configurations includ-
ing crystalline, amorphous, and surface structures,48–50 while tasks
of LD calculations for specific crystals required more targeted
data.25,30 To date, a variety of data construction approaches have
been developed. Here, we will present a spectrum of strategies from
manually crafted approaches to automated protocols.

1. Hand-built approaches

Directly selecting configurations for the dataset based on phys-
ical intuition is a straightforward yet practical and widely adopted
method.51,52 The common artificial methods include the perturba-
tion method and Ab Initio Molecular Dynamics (AIMD).53

As illustrated in Fig. 1(a), the perturbation method begins with
structures positioned at energy minima and then introduces random
displacements to atoms in their supercells to generate reference con-
figurations. This procedure can be conveniently executed with ASE’s
rattle function, following a specific statistical distribution, most com-
monly a Gaussian distribution with a predefined standard deviation
(e.g., 0.1 Å). However, structures generated by this stochastic
approach might sometimes exhibit large interatomic forces due to
the possibility of atoms being placed very close together, resulting in
significant repulsive forces. To address this issue, constraints on a
minimum atomic distance can be added via a Monte Carlo (MC)
process, as introduced in Ref. 54, where configurations with short

atomic distances below a threshold are only accepted with low proba-
bility. Moreover, to ensure that the potential accurately forecasts
forces, it might sometimes be necessary to subject the lattice to stress
through tension or compression.49 After acquiring these reference
structures, they are subsequently employed to produce a reference
dataset via DFT calibration.

Despite its high efficiency, the perturbation method requires
initial structures, which cannot be obtained when considering
amorphous and liquid materials. For this purpose, the more com-
putationally demanding AIMD method [Fig. 1(b)] provides a dis-
tinct advantage in constructing datasets that lack a definable
structural prototype. It involves performing an MD simulation for
a specified duration, after which snapshots are sampled at regular
intervals or using other sampling methods to form a dataset. In
practice, these two hand-built approaches can be combined for
data collection.52

2. Active learning protocols

Manually constructing datasets demands researchers to have
extensive experience, which may inevitably introduce inductive
biases. This can lead to high redundancy in structural features and
an imbalance in data distribution, resulting in unnecessary increase
in data collection efforts and reduced transferability of the
potential.17,55–58 Active learning (AL) strategies are employed to
address this issue through an iterative procedure to gradually
improve the ML model. Starting with a limited collection of labeled
configurations, the procedure iteratively performs the ML potential
training and appends the newly labeled data until certain stopping
criteria are met. Here, selection rules for the appended data are
based on predefined metrics centered around uncertainty, which
quantifies the expected error of prediction on a given configuration.
Two of the most commonly used definitions of uncertainty can be
estimated through an analytical method58,59 or Query-by-Committee
(QbC),60–63 as depicted in Figs. 1(c) and 1(d).

The analytical method is basically restricted to potentials with
linear models or Gaussian process type models, where the model
parameters and its prediction errors can be assumed as an isotropic
Gaussian prior,

y ¼ E þ ε ¼ cBþ ε, (8)

where c � N (0, α�1I), ε � N (0, λ�1). From the given training
dataset {~B, ~y} in the current iteration, it can be derived that the
posterior of model parameters also obeys a Gaussian distribution:

p(cj~B, ~y)/ N(cjμc , Σc), (9)

where μc ¼ λΣc~B~y, Σc ¼ (λ~B
T ~Bþ αI)

�1
. The details of the deriva-

tion can be figured out in Refs. 58 and 64. This gives the determi-
nation of learnable parameters. Then, for a new configuration B*,
its respective Bayesian evaluation is

y*�N(μcB
*, λ�1 þ BTΣcB): (10)

Thus, the analytical uncertainty can be inherently defined as the
standard deviation of the prediction σana ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ�1 þ BTΣcB

p
. Once
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the uncertainty of all configurations is estimated, those configura-
tions with the highest uncertainty can be sampled and augmented
to the dataset, enhancing the potential’s transferability.

Another approach to determine uncertainty can be imple-
mented using the QbC technique, where the so-called “committee”
consists of an ensemble of potentials with the same hyperpara-
meters. In each iteration, these potentials are trained on different
subsamples of the dataset, with a small fraction of certain data
left out in each case. Due to the difference in the training dataset
and stochastic initialization, the learned parameters of potentials
in this committee vary, resulting in different predictions
{E1, . . . ENcom } for the same configuration [dash line in Fig. 1(d)].
The uncertainty can then be estimated as the standard deviation of
these predictions as

σQbC ¼ [Var(E1, . . . , ENcom )]
1
2: (11)

New configurations with high uncertainty are then added to
the training dataset iteratively, similar to the analytical approach.
Once the estimated uncertainties on all configurations are below a

given threshold or other criteria are met, all data are collected as
the final dataset to train a single potential.

Moreover, other AL schemes, including entropy maximization
on feature space distance, dropout method, etc., are detailed in
their respective literature structures.64,65

C. Training and estimation

With the data prepared, it will be divided into two parts (e.g.,
80–20 split), where the majority serves as a training dataset for ML
potential’s development and the remainder is used for estimating
the performance of the trained potential as the testing dataset. This
division can be performed using the random division or stratified
sampling techniques, ensuring both the diversity of the training
data and the comprehensiveness of the potential’s performance
assessment across the entire PES landscape.

Specifically, the purpose of the training process is to opti-
mize the model’s learnable parameters so that the predictions of
energy and force labels align with DFT reference in the training
dataset, thereby accurately fitting the PES of the target system.
This can be achieved by minimizing the loss function with the

FIG. 1. Approaches for data collection. (a) Perturbation method. (b) AIMD method. (c) Analytical definition of uncertainty in AL. (d) Query-by-Committee definition of
uncertainty in AL.
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following form:

L ¼ κ
PNstruct

n¼1

Epred
n � Eref

n

Nat, n

� �2

þ (1� κ)
PNstruct

n¼1

1
Nat, n

XNat, n

i¼1

Fpred
n, i � Fref

n, i
2
,

(12)

where Nstruct and Nat, n denote the number of structures and
number of atoms in the nth structure, respectively, and κ repre-
sents the relative weight between the accuracy of energy predic-
tion and forces prediction. Note that atomic forces are derived
from the differential of the system’s energy with respect to the
atomic coordinates, which implies that fitting solely on energy
could be adequate with sufficient accuracy. However, the com-
plexity inherent in many-body interactions makes this challeng-
ing to achieve. It is necessary to balance the trade-off between
the accuracy of energy and force. This relationship is illustrated
in Fig. 2.

Furthermore, in practice, we often incorporate regularization
terms into the loss function. This is especially necessary when the
training dataset is small relative to the number of model parame-
ters, as there is a risk that the parameters may fall on specific
values that cause overfitting.66,67 Such a surface may exhibit very
steep slopes and provide poor predictions on configurations away
from the data points. Restricting the magnitude of the potential
function parameters helps to prevent these abrupt changes, ensur-
ing a certain smoothness of the potential energy surface and, thus,
mitigating overfitting to some extent. Consequently, the loss func-
tion, with the inclusion of the regularization term, can be reformu-
lated in the following form:

L ¼ κΔE þ (1� κ)ΔF þ L1
P
c in c

jcj þ L2
P
c in c

jcj2, (13)

where ΔE and ΔF denote the energy and force terms in Eq. (12),
respectively. The weighted absolute values of the magnitude and

squared magnitude of the model’s coefficient are named L1 and L2
regularization, respectively, acting as penalty terms to the loss
function.68

Subsequently, utilizing the established objective loss function,
parameters optimization can be carried out using widely used tech-
niques such as Adam69,70 or LBFGS,71,72 for training the potential
function. Additional elaboration on these optimization techniques
is omitted in this context.

D. Pareto optimal and hyperparameters selection

Given a specific dataset and model setting, the training of
MLIPs determines the predictive accuracy of energy and force. By
refining the model’s hyperparameters, such as using a larger cutoff
radius or increasing the order of many-body terms for higher-order
interactions, the accuracy of MLIPs may be enhanced. However,
these adjustments can lead to an increase in the computational
cost, which is particularly detrimental for MD simulations and
high-throughput computations where computational efficiency is
as vital as the potential’s accuracy itself.

The accuracy and speed of MLIPs typically present a trade-off in
the optimization process without a single optimal solution.73,74

Therefore, it is necessary to select from a range of alternatives to
balance accuracy and efficiency. As shown in Fig. 3, by performing a
grid search on the hyperparameters of ACE including the cutoff
radius, order of expansion, and number of basis functions, a series of
potentials can be trained, offering a spectrum of efficiency and preci-
sion pairs. The vertices of their convex hull form the Pareto optimal,75

signifying that any improvement in accuracy will inevitably accom-
pany an increase in the computational cost. These Pareto optimal
points provide optimal solutions for hyperparameters’ selection.

In the thermal calculation practice, the physical accuracy of
MLIPs requires further consideration beyond mere numerical preci-
sion. Employing these Pareto optimal points, properties such as cell
length, phonon frequency, and thermal conductivity of crystalline
silicon are predicted, as shown in Figs. 3(b)–3(d). Convergence of
these properties’ calculations is observed when the computational
cost surpasses 8 × 10−3 ms/timestep/atom, with the force
root-mean-square error (RMSE) falling below 50 meV/Å. This con-
vergence indicates that the potential’s accuracy has met the compu-
tational requirements. Therefore, the potential marked on the
dashed line can satisfy the computational needs with a balance of
performance and efficiency. This convergence behavior of Pareto
optimal potentials can assist in the selection of hyperparameters.

III. EXAMPLES FOR APPLICATIONS

State-of-the-art MLIP models, including the ACE potential,
offer an interface to the ASE or LAMMPS (as listed in Table I),
allowing convenient LD calculations and MD simulations. In the
following, we will demonstrate how the ACE is used to calculate the
thermal conductivity of crystalline silicon and amorphous carbon.
All the data, codes, and scripts necessary to reproduce the results
can be accessed at https://github.com/Dio2k/Tutorial-ACE4LDSim.

FIG. 2. The trade-off relationship between the accuracy of energy and force in
MLIP training.
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A. Diamond silicon

LD is a fundamental approach for normal modes, i.e.,
phonons in crystal, the quantized units of vibrational energy that
serve as the dominating heat carriers in insulators and semiconduc-
tors. Harmonic LD calculation takes second FCs to generate
phonon dispersion, group velocities, and other harmonic or quasi-
harmonic phonon properties, while anharmonic LD calculation
takes third or higher-order FCs to generate phonon scattering rates,
which can provide scattering rates. With these phonon properties,
thermal conductivities can be calculated by solving PBTE. Here, we
show the workflow with Phonopy and Phono3py for LD calcula-
tions and PBTE solving,43,76 as illustrated in Fig. 4, where MLIPs
can replace DFT in structural relaxation and the generation of FCs
to reduce the computational cost. We will exemplify this process
using the calculation of crystalline silicon.

While there have already been several publicly available data-
sets for crystalline silicon, we elect to construct a new dataset from
the ground up for pedagogical purposes. Here, we employ hand-
built approaches, incorporating both perturbation and AIMD
methods for data construction. First, we generate 300 structures by
introducing random displacements with a deviation of 0.03 Å on
atomic positions and simultaneously applying cell strains ranging
from −2% to +2% for each degree of freedom. This process is con-
ducted using a 2 × 2 × 2 supercell of crystal silicon comprising 64
atoms. These reference configurations are then subjected to single-

point DFT calculations using the Perdew–Burke–Ernzerhof func-
tional with the generalized gradient approximation,77 a cutoff
energy of 600 eV, and a k-point mesh of 4 × 4 × 4 in Vienna Ab
initio Simulation Package (VASP).78,79 Second, we perform ten
10 ps AIMD simulations at a temperature range from 100 to
1000 K in 100 K increments, using a supercell of the same size and
a time step of 10 fs. Snapshots are sampled every 0.1 ps, yielding
other 1000 data. In total, we obtain 1300 reference configurations
for our dataset.

After obtaining the datasets, the ACE potential can be fit by
utilizing pacemaker34,46,47 software. For parameterization, the site
energy is directly read out from a single atom in a linear form, and
the cutoff distance (rcut) is set to 7.0Å. A total of 700 basis func-
tions are parameterized with a maximum body order correspond-
ing to ν = 6. Ten percent of the total dataset is randomly selected
for testing, not involved in the training procedure. Parameter opti-
mization results in a fit with an energy mean-averaged error
(MAE) of 2.82 meV/atom and a force root-mean-square error
(RMSE) of 12.24 meV/Å on the testing datasets. Note that the
RMSE metric is used for force since it is sensitive to undesirable
outliers. This provides a more stringent estimation of the model’s
performance in predicting forces.80

We proceed to demonstrate the application of the trained ACE
potential to thermal calculations. Upon completion of the ACE
potential training, a YAML file recording all model parameters is
automatically created in the training directory. This file can then be

FIG. 3. (a) Pareto optimal via grid search. (b) and (d) Physical accuracy exemplification of cell length, phonon cutoff frequency, and thermal conductivity, respectively, on
Pareto optimal points.
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used as an ASE calculator, enabling the convenient prediction of
structural energies and atomic forces (this interface is similar to the
other Python-supported MLIPs listed in Table I). Listing 1 shows
an illustrative code extract to perform structural relaxation with the
ACE potential in Python, where the PreconLBFGS optimizer81 is
employed. The variability of the cell shape and volume during opti-
mization (variable_cell) and the force convergence criterion (fmax)
can be further specified. The optimized equilibrium structure is a
prerequisite for the subsequent force constant calculations.

Listing 1. Code extract of structural optima with the ACE potential.

from pyace import PyACECalculator
ase_atoms.calc = PyACECalculator(‘/path/to/potential’)
from ase.optimize.precon import PreconLBFGS
optimizer = PreconLBFGS(ase_atoms, variable_cell = True)
optimizer.run(fmax = 1e-5)

For FC calculations, a practical approach is to apply finite dis-
placements to atoms within a given supercell.43 With a sufficient
number of atomic displacement and force pairs, FCs can be
approximated mathematically. This can be achieved with the help
of the phono3py package as shown in Listing 2. In the first block,
calculation settings are specified, which include the size of the
supercell (supercell_matrix), the finite displacement distance
applied to atoms (distance), and the cutoff distance on displace-
ment pairs to reduce computational budget (cutoff_pair_distance).

In the second block, forces on the displaced structures are predicted
with the ASE calculator iteratively, and then, FCs are estimated.
Here, only second and third FCs are considered.

Listing 2. Code extract of force constant calculations with the ACE potential.

from phono3py import Phono3py
phono3py = Phono3py(phpy_atoms, supercell_matrix = [3, 3, 3])
phono3py.generate_displacements(distance = 0.03, cutoff_pair_distance =
6.21)
# Adapted to ASE.Atoms formats for ML potentials calculator.
supercell_fc2 = PhonopyAtoms2AseAtoms(phono3py.phonon_supercell)
supercell_fc2.calc = PyACECalculator(‘/path/to/potential’)
for dataset in phono3py.phonon_dataset[‘first_atoms’]:

supercell_fc2.positions[dataset[‘number’]] + = dataset
[‘displacement’]

dataset[‘forces’] = supercell_fc2.get_forces()
supercell_fc2.positions[dataset[‘number’]]− = dataset

[‘displacement’]
phono3py.produce_fc2()
fc2 = phono3py.fc2
# the third force constant can be obtained with a similar process.
fc3 =…

With the FCs prepared using the developed ACE model, we
proceed with regular phonon computations to derive the thermal
conductivity of crystalline silicon. Figure 5 presents the calculated
phonon band structure, density of states (DOS), and temperature-
dependent thermal conductivity, with comparisons to the DFT
results under the same calculation settings. It is evident that the LD
computations accelerated by MLIP align with DFT in high agree-
ment, indicating the capability of MLIPs to predict thermal trans-
port properties with comparable accuracy to DFT.

1. Amorphous carbon

Amorphous materials are valuable for applications such as
thermal barrier coatings and thermoelectric, where their inherently
low thermal conductivity due to disorder is desired.82 However, the
complex local environments and interactions in amorphous materi-
als require large atomic structures, which pose significant chal-
lenges for ab initio calculations, particularly in thermal
computations.13,83 To address this, MLIPs can accurately capture
the complex interatomic interactions in amorphous systems, allow-
ing for reliable atomic model generation and force constant calcula-
tions. In this case, we use amorphous carbon (a-C) to exemplify
the advantage of MLIPs in handling thermal transport calculations
for complex systems. As shown in Fig. 6, the melt-quench protocol,
structure relaxation, and FC calculations for further thermal trans-
port modeling can all be accelerated by MLIPs.

Since the purpose of the target MLIP is to correctly simulate
the melt-quench process and calculate the FCs required for thermal
conductivity calculations, the training dataset must cover a wide
range of configurations as comprehensively as possible. Manually
creating a reasonable dataset in a convincing manner is challenging.
Therefore, we opt to utilize the QbC technique from active learning
to construct the dataset instead of using hand-built approaches.

FIG. 4. Workflow of ML accelerated force constant calculations in lattice dynamics.
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First, a small initial dataset is built by 500 structures sampled from
an AIMD simulation performed using the VASP with the Perdew–
Burke–Ernzerhof exchange-correlation functional under the gener-
alized gradient approximation used along with projector-

augmented wave (PAW) pseudo-potentials.77,84,85 The simulation
starts with a (unstable) simple-cubic lattice of carbon containing
125 atoms with density of 2.5 g/cm3. The system is first held at
8000 K for 3 ps, then maintained in the liquid state at 5000 K for
another 3 ps, quenched to 300 K at a constant rate of over 1 ps, and
finally, annealed at 300 K for 3 ps. The time step is set to 1 fs along
with a k-point grid of 3 × 3 × 3 in all simulations. Second, we use a
committee of eight potentials to iteratively select new snapshots to
enrich the initial dataset. For each iteration, 50 unselected struc-
tures with the highest uncertainties are added to the dataset, and
the protocol stops after 10 iterations. This procedure ultimately
yields a dataset comprising 1000 structures for training the final
ACE potential.

For potential parameterization, the site energy is directly read
out from two single atomic properties in the Finnis Sinclair form
and the cutoff distance is set as 5.5Å. A total of 700 basis functions
are parameterized with a maximum body order corresponding to
ν = 6. Ten percent of the total dataset is randomly selected for
testing. Parameter optimization leads to a fit with an energy MAE
of 40.03 meV/atom and a force RMSE of 540.07 meV/Å for the
testing datasets.

Listing 3. Code extract of ACE potential definition in the LAMMPS.

pair_style pace
pair_coeff * * /path/to/potential

Leveraging the speed advantage of the ACE potential, we gen-
erate an a-C sample using a larger cell containing more atoms and
a longer melt-quench process.86 This MD simulation is performed

FIG. 5. Comparison of DFT and ML predictions on (a) band structure and DOS, and (b) thermal conductivity.

FIG. 6. Workflow of ML accelerated LD simulation on amorphous materials.
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in the LAMMPS, with the implementation of ACE potential shown
in Listing 3. Using the same time step of 1 fs, we start with a
512-atom orthogonal box held at 8000 K and then cooled down to
5000 K for 100 ps. We then perform a rapid quench from 5000 to
300 K within 1 ps. Finally, the system is equilibrated at 300 K for
100 ps, followed by an energy minimization process for the equilib-
rium structure. We compare the radial distribution function (RDF)
of the final generated structure with those from AIMD and the
Tersoff potential.87 As shown in Fig. 7(b), the RDF of ACE shows
good agreement with the result of AIMD simulation, whereas the
Tersoff potential does not capture the right locations and values of
the second and the third RDF peaks. We also calculate the fourfold
coordinated atom percentage to be 30.1%, which aligns with the
previous works reported in Ref. 88. Additionally, we assess the
computational efficiency of the ACE potential. As illustrated in
Fig. 7(a), simulations accelerated by MLIPs show a speed of 3 to 4
orders of magnitude faster than AIMD, with linear scaling relative
to the system size and the number of CPU cores used in the calcu-
lation. In contrast, the computational cost of AIMD grows expo-
nentially with the number of atoms, leading to a sharp increase in
computational expense, which restricts its application to large
systems (e.g., over 103 atoms).

With the relaxed atomic model, we calculate the second and
third FCs and, subsequently, the thermal conductivity for a-C. The
FCs are derived using the PHONON package89 in the LAMMPS.
For thermal conductivity, we use the Quasi-harmonic Green’s
Function (QHGK) method90 implemented in kALDo,44 versatile
and scalable open-source software to compute phonon transport in

crystalline and amorphous solids. As illustrated in Fig. 7(c), the
thermal conductivity of a-C is 1.36W/m/K, which is close to the
value of 1.61W/m/K using the linear fit to experimental data
reported in Ref. 91, demonstrating the capability of MLIPs in
thermal calculations for complex systems. We noted that the propa-
gation contribution is likely to be underestimated due to the limita-
tion of the QHGK method and a proper extrapolation is needed for
the case in which propagation mechanism matters,83 like a-C with
higher density92 and amorphous silicon.93

IV. SUMMARY

In this tutorial, we offer a comprehensive guide to develop
MLIPs for modeling thermal transport using the LD method.
This guide covers the introduction of basic concepts and the pro-
cedure of MLIP development from data construction, potential
training to the optimal and the selection of model hyperpara-
meters. We also present two application examples, i.e., crystalline
silicon and amorphous carbon, to demonstrate the superiority of
speed with the accuracy of MLIPs. In addition, we provide practi-
cal code implementations for beginners to follow conveniently. It
is noted that while we use ACE potential as the illustrative back-
bone model in this tutorial, the underlying principle, practical
strategies, and guidelines can be easily transferred to the other
MLIP models. We believe that our tutorial will promote the
extensive applications of MLIPs in thermal transport research,
encouraging innovative discoveries and their practical applica-
tions in the industry.

FIG. 7. (a) Comparison of computation efficiency on AIMD and MLIP MD. (b) RDF of a-C. (c) Scattering rate distribution and cumulative thermal conductivity of a-C.
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